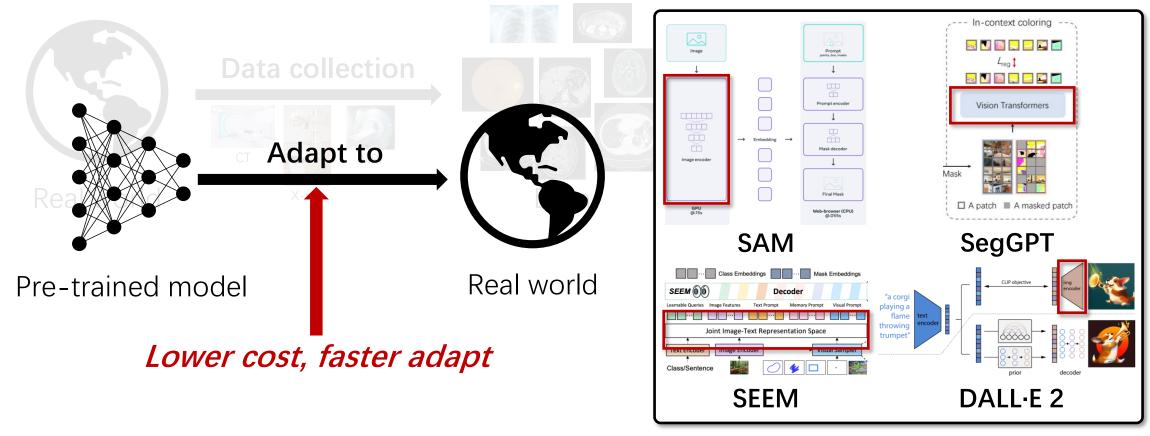


GEOMETRIC VISUAL SIMILARITY LEARNING

IN 3D MEDICAL IMAGE SELF-SUPERVISED PRE-TRAINING


He Yuting (何字重) Southeast University

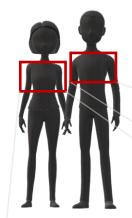
BACKGROUND:

SELF-SUPERVISED PRE-TRAINING

Basis of AGI…

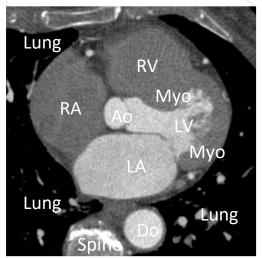
He, Y., et al. (2023). Geometric Visual Similarity Learning in 3D Medical Image Self-supervised Pre-training. *IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023*

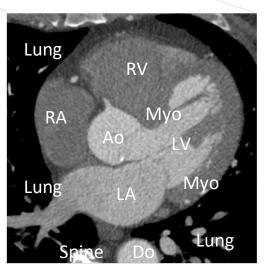
BACKGROUND:


MEDICAL IMAGES V.S. NATURAL IMAGES

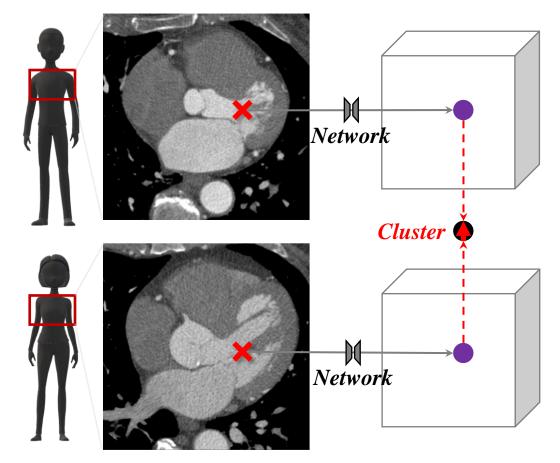
Natural images

- ✓ Scan from large scopes
- ✓ Nonlimited range and pose
- Large inter-image difference

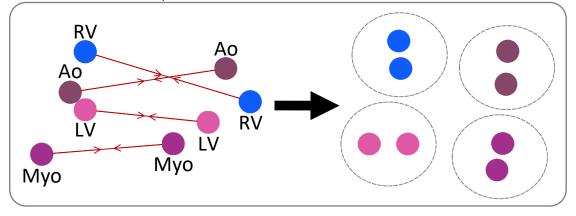


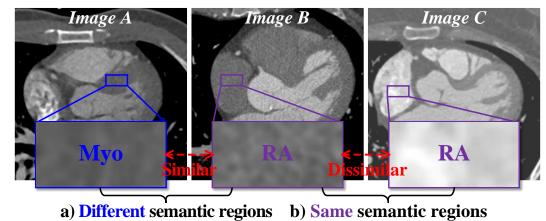

Medical images

- ✓ Scan from small scopes
- ✓ Limited range and pose
- Large inter-image similarity



BACKGROUND:

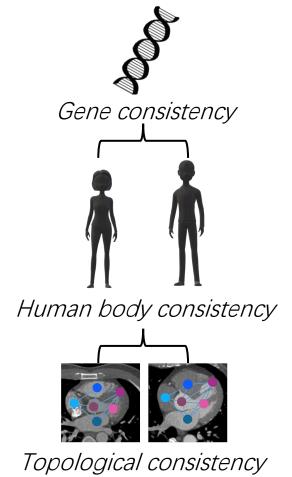

LIMITATION

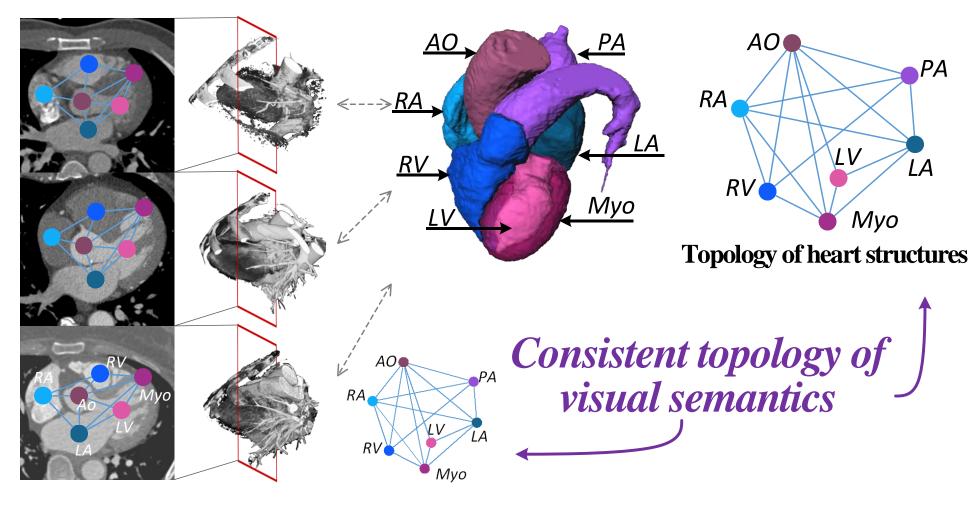

Wang, X., et al. (2021). Dense contrastive learning for self-supervised visual pre-training. CVPR (pp. 3024-3033).

DenseCL, DeepCluster, etc.

with similar appearance

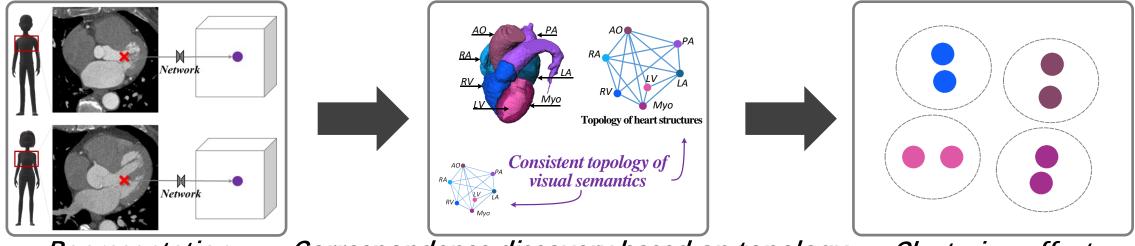
Limitation: unreliable inter-image correspondence




with dissimilar appearance

MOTIVATION:

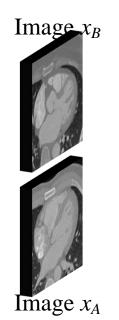
TOPOLOGICAL INVARIANCE



Hypothesis: Keeping the topology of 3D medical images will enhance the correspondence discovery

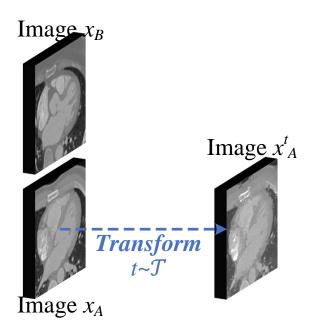
CONTRIBUTION:

GEOMETRIC VISUAL SIMILARITY LEARNING

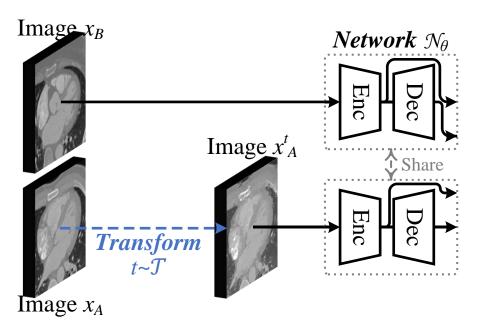

Representation Correspondence discovery based on topology

Clustering effect

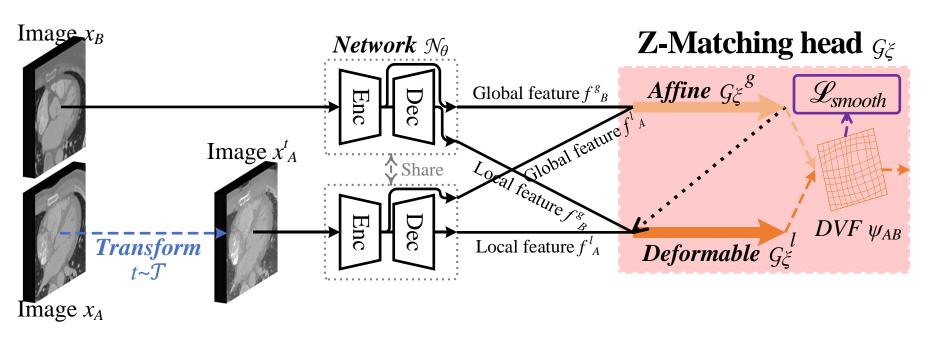
- Advances the **learning of inter-image similarity in 3D medical image SSP** pushing the representability of pre-trained models;
- ➤ Propose the Geometric Visual Similarity Learning (GVSL) that embeds the prior of topological invariance into the correspondence learning;
- ➤ Present a novel SSP head, **Z-Matching head**, for simultaneously powerful global and local representation via GVSL.


GEOMETRIC VISUAL SIMILARITY LEARNING

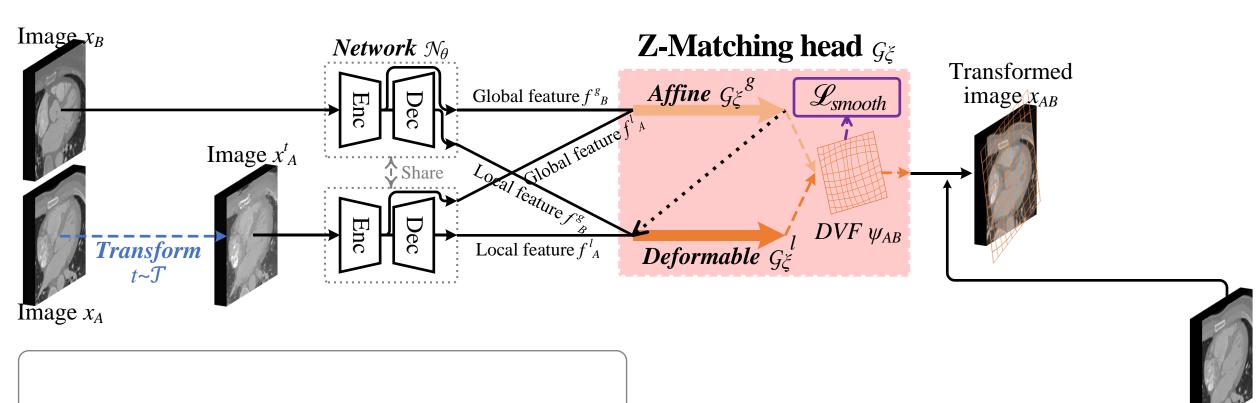
Two 3D images


GEOMETRIC VISUAL SIMILARITY LEARNING

Augmentation for feature diversity

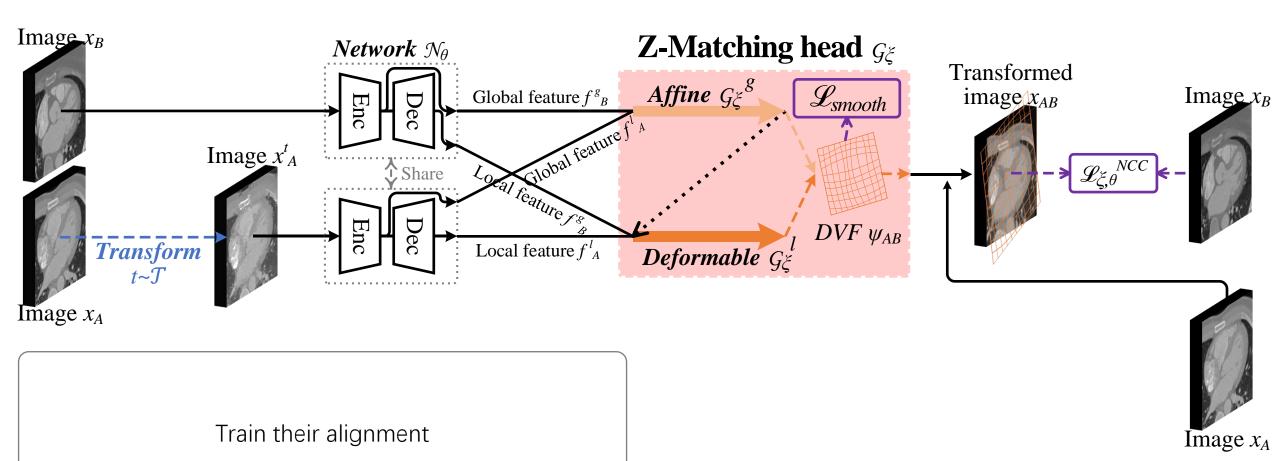

GEOMETRIC VISUAL SIMILARITY LEARNING

Feature extraction via two shared-weight networks


GEOMETRIC VISUAL SIMILARITY LEARNING

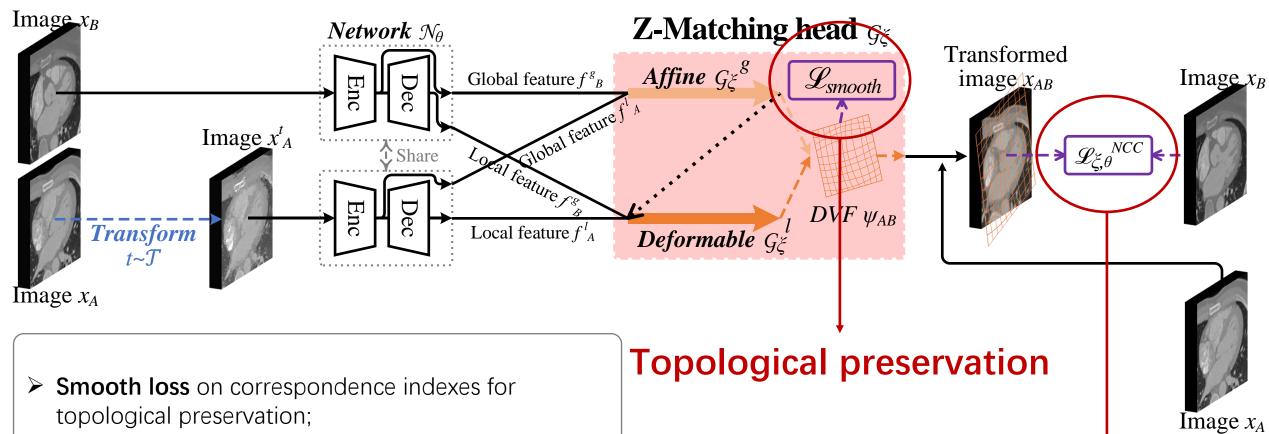
Predict correspondence

GEOMETRIC VISUAL SIMILARITY LEARNING

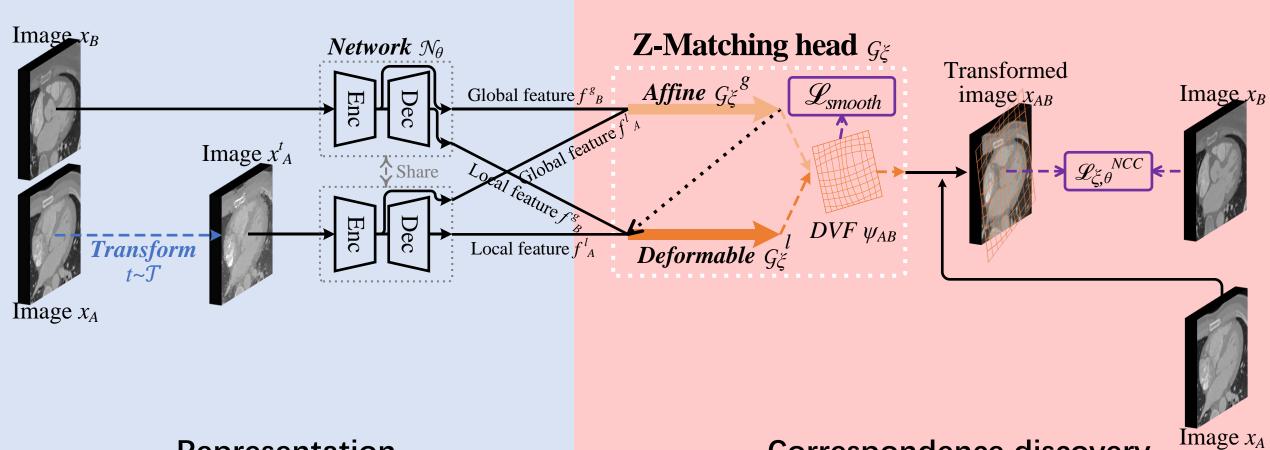


Deform one image to the other

Image x_A


GEOMETRIC VISUAL SIMILARITY LEARNING

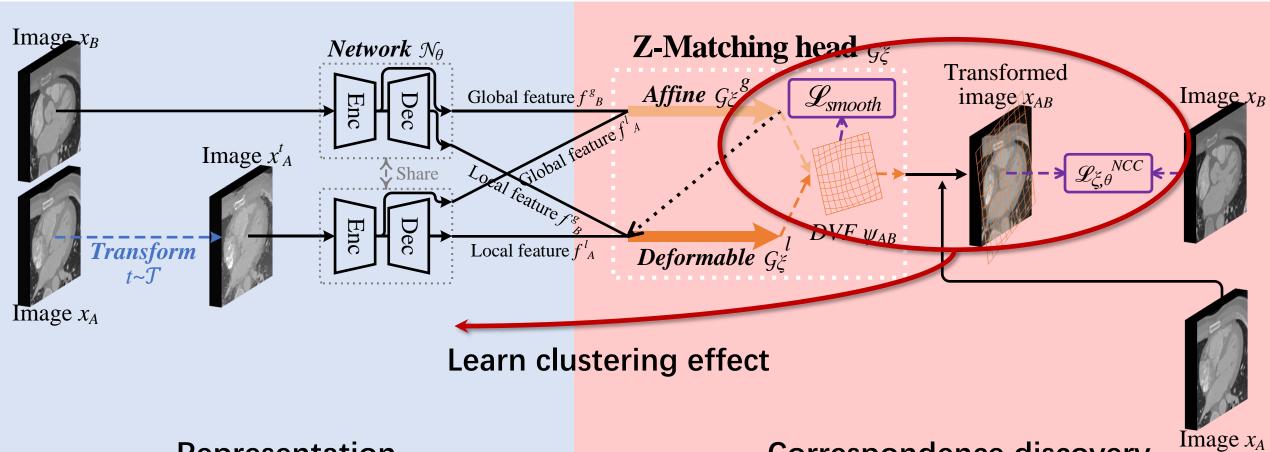
GEOMETRIC VISUAL SIMILARITY LEARNING



- topological preservation;
- > Similarity loss inter-images for correspondence.

Correspondence

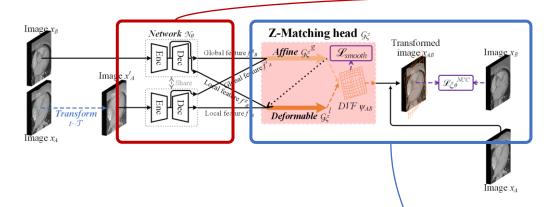
GEOMETRIC VISUAL SIMILARITY LEARNING



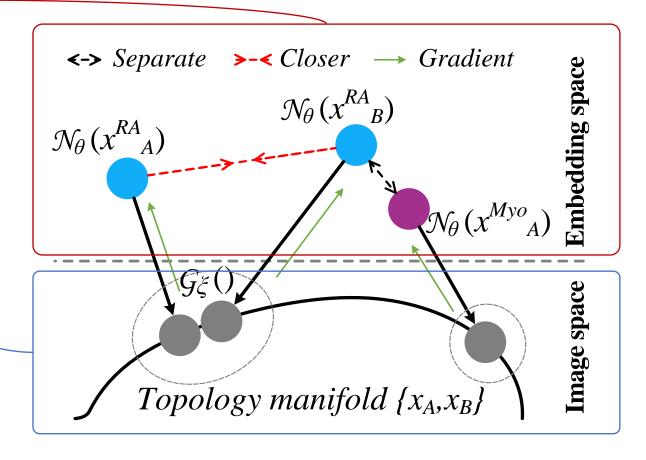
Representation

Correspondence discovery

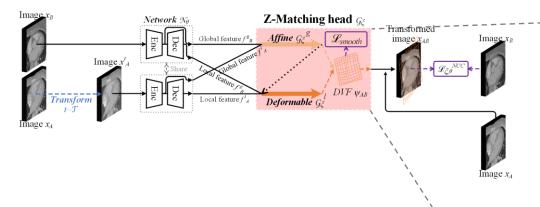
GEOMETRIC VISUAL SIMILARITY LEARNING

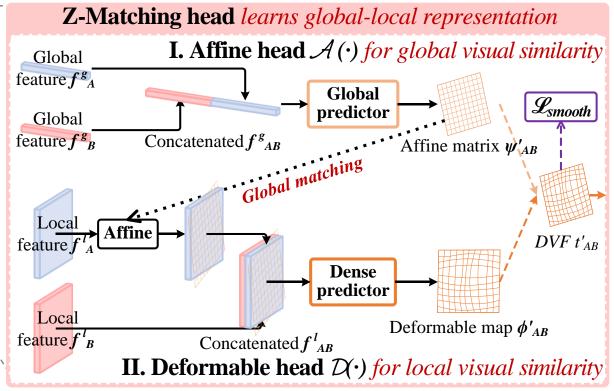

Representation

Correspondence discovery

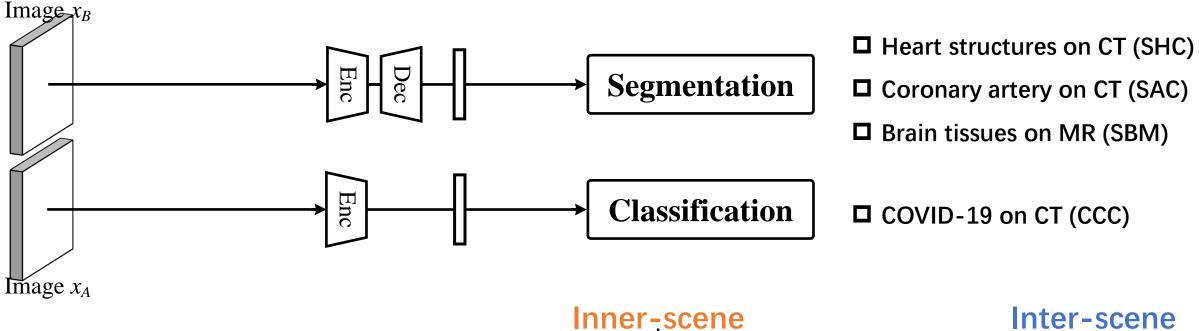


METHODOLOGY (INTUITIONS):

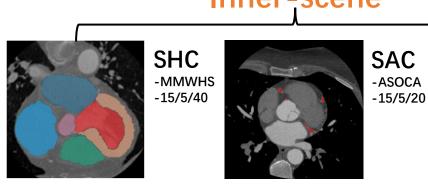

GEOMETRIC VISUAL SIMILARITY LEARNING

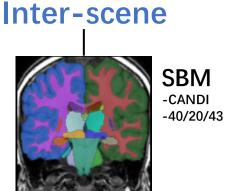

Implicitly embed a topology manifold inner the images into the measurement process, and measure the similarity on this topology manifold.


- Affine head: global visual similarity and alignment for global representation
- Deformable head: local visual similarity and alignment for dense representation



SELF-RESTORATION FOR WARM-UP





Pretrain dataset: 302 CCTA images

CCC -STOIC -1k/400/ 600

LINEAR AND FINE-TUNING EVALUATION

Pre-training	a) Linear: powerful representation				b) Fine-tuning: great transferring			
1 ic-training	$SHC_{DSC\%}$	$\mathrm{SAC}_{DSC\%}$	$CCC_{AUC\%}$	$SBM_{DSC\%}$	$SHC_{DSC\%}$	$\mathrm{SAC}_{DSC\%}$	$CCC_{AUC\%}$	${\sf SBM}_{DSC\%}$
		Inner scene		Inter scene		Inner scene		Inter scene
Scratch	21.9	10.0	52.7	56.4	87.8	80.4	74.4	89.7
Denosing [40]	31.4(+9.5)	$9.3_{(-0.7)}$	57.9 _(+5.2)	$28.3_{(-28.1)}$	90.3 _(+2.5)	80.5 (+0.1)	75.6 _(+1.2)	89.7
In-painting [30]	$32.3_{(+10.4)}$	$5.9_{(-4.1)}$	$57.1_{(+4.4)}$	$25.0_{(-31.4)}$	$90.4_{(+2.6)}$	$80.3_{(-0.1)}$	$79.9_{(+5.5)}$	$89.9_{(+0.2)}$
Models Genesis [48]	$47.4_{(+25.5)}$	$22.5_{(+12.5)}$	$60.4_{(+7.7)}$	$44.9_{(-11.5)}$	$90.3_{(+2.5)}$	$79.9_{\ (-0.5)}$	$80.7_{(+6.3)}$	$89.4_{(-0.3)}$
Rotation [23]	56.1 _(+34.2)	$21.9_{(+11.9)}$	62.1 _(+9.4)	$54.1_{(-2.3)}$	$90.6_{(+2.8)}$	$81.1_{(+0.7)}$	$77.1_{(+2.7)}$	$89.6_{(-0.1)}$
DeepCluster [2]	55.9 _(+34.0)	$4.4_{(-5.6)}$	$57.9_{(+5.2)}$	$67.5_{(+11.1)}$	$85.4_{(-2.4)}$	$80.5_{(+0.1)}$	$59.9_{(-14.5)}$	$89.1_{(-0.6)}$
SimSiam [4]	56.5 _(+34.6)	$9.7_{(-0.3)}$	$61.0_{(+8.3)}$	$66.2_{(+9.8)}$	$87.5_{(-0.3)}$	80.1 (-0.3)	$73.6_{(-0.8)}$	$89.8_{(+0.1)}$
BYOL [7]	$46.9_{(+25.0)}$	$8.6_{(-1.4)}$	$53.7_{(+1.0)}$	$52.7_{(-3.7)}$	88.6 _(+0.8)	80.7 (+0.3)	$76.5_{(+2.1)}$	$89.5_{(-0.2)}$
SimCLR [3]	$48.7_{(+26.8)}$	$15.5_{(+5.5)}$	$61.3_{(+8.6)}$	$58.7_{(+2.3)}$	86.9 (-0.9)	$79.9_{(-0.5)}$	$74.3_{(-0.1)}$	$89.3_{(-0.4)}$
w/o Z-Matching	49.1 _(+27.2)	21.1 _(+11.1)	55.8 _(+3.4)	45.1 _(-11.3)	88.3 _(+0.5)	81.2 _(+0.8)	81.3 _(+6.9)	89.7
w/o Fundament	$45.3_{(+23.4)}$	$0.0_{(-10.0)}$	$58.8_{(+6.4)}$	$48.5_{(-7.9)}$	$87.0_{(-0.8)}$	$79.5_{(-0.9)}$	$76.6_{(+2.2)}$	$89.0_{(-0.7)}$
w/o Affine head	$57.7_{(+35.8)}$	$17.9_{(+7.9)}$	$57.6_{(+4.9)}$	$53.4_{(-3.0)}$	$89.4_{(+1.6)}$	$82.3_{(+1.9)}$	$79.8_{(+5.4)}$	89.8 _(+0.1)
Our GVSL (Whole)	68.4 _(+46.5)	28.7 _(+18.7)	$60.8_{(+8.1)}$	79.9 _(+23.5)	91.2 _(+3.4)	81.3 _(+0.9)	82.2 _(+7.8)	90.0 (+0.3)
Our Gyst (whole)	U0.4 (+46.5)	20.7(+18.7)	00.0(+8.1)	19.9(+23.5)	91.2(+3.4)	01.3(+0.9)	64.4 (+7.8)	90.0 (+0.3)

> Powerful inner-scene transferring for both large and small structures

LINEAR AND FINE-TUNING EVALUATION

Pre-training	a) Linear: powerful representation				b) Fine-tuning: great transferring				
Fie-training	$SHC_{DSC\%}$	$\mathrm{SAC}_{DSC\%}$	$CCC_{AUC\%}$	$SBM_{DSC\%}$	$\mathrm{SHC}_{DSC\%}$	$\mathrm{SAC}_{DSC\%}$	$CCC_{AUC\%}$	$SBM_{DSC\%}$	
		Inner scene		Inter scene	•	Inner scene		Inter scene	
Scratch	21.9	10.0	52.7	56.4	87.8	80.4	74.4	89.7	
Denosing [40]	31.4 _(+9.5)	$9.3_{(-0.7)}$	57.9 _(+5.2)	$28.3_{(-28.1)}$	90.3 _(+2.5)	80.5 (+0.1)	75.6 _(+1.2)	89.7	
In-painting [30]	$32.3_{(+10.4)}$	$5.9_{(-4.1)}$	$57.1_{(+4.4)}$	$25.0_{(-31.4)}$	$90.4_{(+2.6)}$	$80.3_{(-0.1)}$	$79.9_{(+5.5)}$	$89.9_{(+0.2)}$	
Models Genesis [48]	$47.4_{(+25.5)}$	$22.5_{(+12.5)}$	$60.4_{(+7.7)}$	$44.9_{(-11.5)}$	$90.3_{(+2.5)}$	$79.9_{(-0.5)}$	$80.7_{(+6.3)}$	$89.4_{(-0.3)}$	
Rotation [23]	56.1 _(+34.2)	$21.9_{(+11.9)}$	62.1 _(+9.4)	$54.1_{(-2.3)}$	$90.6_{(+2.8)}$	$81.1_{(+0.7)}$	$77.1_{(+2.7)}$	$89.6_{(-0.1)}$	
DeepCluster [2]	$55.9_{(+34.0)}$	$4.4_{(-5.6)}$	$57.9_{(+5.2)}$	$67.5_{(+11.1)}$	$85.4_{(-2.4)}$	$80.5_{(+0.1)}$	$59.9_{(-14.5)}$	89.1 _(-0.6)	
SimSiam [4]	56.5 _(+34.6)	$9.7_{(-0.3)}$	$61.0_{(+8.3)}$	$66.2_{(+9.8)}$	$87.5_{(-0.3)}$	$80.1_{(-0.3)}$	$73.6_{(-0.8)}$	89.8 _(+0.1)	
BYOL [7]	$46.9_{(+25.0)}$	$8.6_{(-1.4)}$	$53.7_{(+1.0)}$	$52.7_{(-3.7)}$	$88.6_{(+0.8)}$	$80.7_{\ (+0.3)}$	$76.5_{(+2.1)}$	$89.5_{(-0.2)}$	
SimCLR [3]	$48.7_{(+26.8)}$	$15.5_{(+5.5)}$	$61.3_{(+8.6)}$	$58.7_{(+2.3)}$	86.9 (-0.9)	$79.9_{(-0.5)}$	$74.3_{(-0.1)}$	$89.3_{(-0.4)}$	
w/o Z-Matching	49.1 _(+27.2)	21.1 _(+11.1)	$55.8_{(+3.4)}$	45.1 _(-11.3)	88.3 _(+0.5)	81.2 _(+0.8)	81.3 _(+6.9)	89.7	
w/o Fundament	$45.3_{(+23.4)}$	$0.0_{(-10.0)}$	$58.8_{(+6.4)}$	$48.5_{(-7.9)}$	$87.0_{(-0.8)}$	$79.5_{\ (-0.9)}$	$76.6_{(+2.2)}$	$89.0_{(-0.7)}$	
w/o Affine head	$57.7_{(+35.8)}$	$17.9_{(+7.9)}$	57.6 _(+4.9)	$53.4_{(-3.0)}$	89.4 _(+1.6)	82.3 _(+1.9)	$79.8_{(+5.4)}$	89.8 _(+0.1)	
Our GVSL (Whole)	68.4 _(+46.5)	28.7 _(+18.7)	$60.8_{(+8.1)}$	79.9 _(+23.5)	91.2 _(+3.4)	81.3 _(+0.9)	$82.2_{(+7.8)}$	90.0(+0.3)	

> Effective inter-scene transferring, but is not significant in fine-tuning

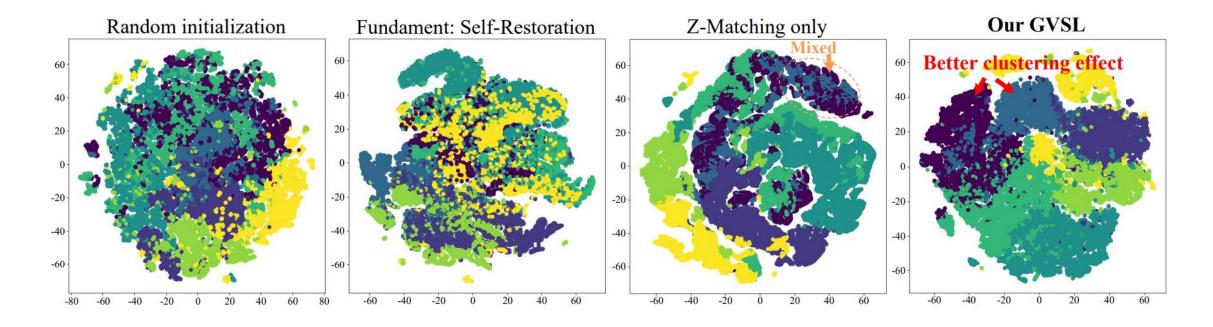
LINEAR AND FINE-TUNING EVALUATION

Dense

Pre-training		a) Linear: powerful representation									
	$SHC_{DSC\%}$	$\mathrm{SAC}_{DSC\%}$	$CCC_{AUC\%}$	SBM_{DSC}	SHC_{DS} $\%$	$\mathrm{SAC}_{DSC\%}$	-CCC _{AUC} %	${ m SBM}_{DSC\%}$			
		Inner scene		Inter scene		Inner scene		Inter scene			
Scratch	21.9	10.0	52.7	56.4	87.8	80.4	74.4	89.7			
Denosing [40]	31.4 _(+9.5)	$9.3_{(-0.7)}$	57.9 _(+5.2)	$28.3_{(-28.1)}$	90.3 _(+2.5)	80.5 (+0.1)	75.6 _(+1.2)	89.7			
In-painting [30]	$32.3_{(+10.4)}$	$5.9_{(-4.1)}$	$57.1_{(+4.4)}$	$25.0_{(-31.4)}$	$90.4_{(+2.6)}$	$80.3_{(-0.1)}$	$79.9_{(+5.5)}$	$89.9_{(+0.2)}$			
Models Genesis [48]	$47.4_{(+25.5)}$	$22.5_{(+12.5)}$	$60.4_{(+7.7)}$	$44.9_{(-11.5)}$	$90.3_{(+2.5)}$	$79.9_{\ (-0.5)}$	$80.7_{(+6.3)}$	$89.4_{(-0.3)}$			
Rotation [23]	56.1 _(+34.2)	$21.9_{(+11.9)}$	62.1 _(+9.4)	$54.1_{(-2.3)}$	$90.6_{(+2.8)}$	$81.1_{(+0.7)}$	$77.1_{(+2.7)}$	$89.6_{(-0.1)}$			
DeepCluster [2]	$55.9_{(+34.0)}$	$4.4_{(-5.6)}$	$57.9_{(+5.2)}$	$67.5_{(+11.1)}$	$85.4_{(-2.4)}$	$80.5_{(+0.1)}$	$59.9_{(-14.5)}$	$89.1_{(-0.6)}$			
SimSiam [4]	56.5 _(+34.6)	$9.7_{(-0.3)}$	$61.0_{(+8.3)}$	$66.2_{(+9.8)}$	$87.5_{(-0.3)}$	$80.1_{(-0.3)}$	$73.6_{(-0.8)}$	$89.8_{(+0.1)}$			
BYOL [7]	$46.9_{(+25.0)}$	$8.6_{(-1.4)}$	$53.7_{(+1.0)}$	$52.7_{(-3.7)}$	$88.6_{(+0.8)}$	80.7 (+0.3)	$76.5_{(+2.1)}$	$89.5_{(-0.2)}$			
SimCLR [3]	$48.7_{(+26.8)}$	$15.5_{(+5.5)}$	$61.3_{(+8.6)}$	$58.7_{(+2.3)}$	86.9 (-0.9)	$79.9_{(-0.5)}$	$74.3_{(-0.1)}$	$89.3_{(-0.4)}$			
w/o Z-Matching	49.1 _(+27.2)	$21.1_{(+11.1)}$	55.8 _(+3.4)	45.1 _(-11.3)	88.3 _(+0.5)	81.2 _(+0.8)	81.3 _(+6.9)	89.7			
w/o Fundament	$45.3_{(+23.4)}$	$0.0_{(-10.0)}$	$58.8_{(+6.4)}$	$48.5_{(-7.9)}$	$87.0_{(-0.8)}$	$79.5_{\ (-0.9)}$	$76.6_{(+2.2)}$	$89.0_{(-0.7)}$			
w/o Affine head	$57.7_{(+35.8)}$	$17.9_{(+7.9)}$	$57.6_{(+4.9)}$	$53.4_{(-3.0)}$	$89.4_{(+1.6)}$	$82.3_{(+1.9)}$	$79.8_{(+5.4)}$	$89.8_{(\pm 0.1)}$			
Our GVSL (Whole)	68.4 _(+46.5)	28.7 _(+18.7)	$60.8_{(+8.1)}$	79.9 _(+23.5)	91.2 _(+3.4)	81.3 _(+0.9)	82.2 _(+7.8)	90.0 _(+0.3)			

Global

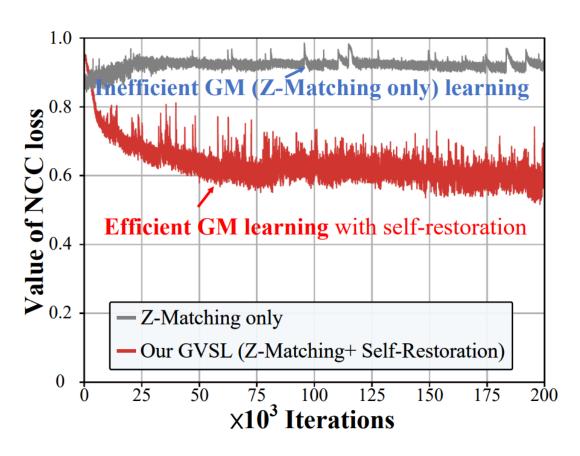
> Superiority in global and dense prediction tasks



ABLATION STUDY

Pre-training	a) Linear: powerful representation				b) Fine-tuning: great transferring				
	$SHC_{DSC\%}$	$\mathrm{SAC}_{DSC\%}$	$CCC_{AUC\%}$	$SBM_{DSC\%}$	$SHC_{DSC\%}$	$\mathrm{SAC}_{DSC\%}$	$CCC_{AUC\%}$	$SBM_{DSC\%}$	
		Inner scene		Inter scene		Inner scene		Inter scene	
Scratch	21.9	10.0	52.7	56.4	87.8	80.4	74.4	89.7	
Denosing [40]	31.4 _(+9.5)	$9.3_{(-0.7)}$	57.9 _(+5.2)	$28.3_{(-28.1)}$	90.3 _(+2.5)	80.5 (+0.1)	75.6 _(+1.2)	89.7	
In-painting [30]	$32.3_{(+10.4)}$	$5.9_{(-4.1)}$	$57.1_{(+4.4)}$	$25.0_{(-31.4)}$	$90.4_{(+2.6)}$	80.3 (-0.1)	$79.9_{(+5.5)}$	$89.9_{(+0.2)}$	
Models Genesis [48]	$47.4_{(+25.5)}$	$22.5_{(+12.5)}$	$60.4_{(+7.7)}$	$44.9_{(-11.5)}$	$90.3_{(+2.5)}$	$79.9_{\ (-0.5)}$	$80.7_{(+6.3)}$	89.4 _(-0.3)	
Rotation [23]	56.1 _(+34.2)	$21.9_{(+11.9)}$	62.1 _(+9.4)	$54.1_{(-2.3)}$	$90.6_{(+2.8)}$	$81.1_{(+0.7)}$	$77.1_{(+2.7)}$	89.6 _(-0.1)	
DeepCluster [2]	$55.9_{(+34.0)}$	$4.4_{(-5.6)}$	57.9 _(+5.2)	$67.5_{(+11.1)}$	$85.4_{(-2.4)}$	$80.5_{(+0.1)}$	$59.9_{(-14.5)}$	89.1 _(-0.6)	
SimSiam [4]	56.5 _(+34.6)	$9.7_{(-0.3)}$	$61.0_{(+8.3)}$	$66.2_{(+9.8)}$	$87.5_{(-0.3)}$	$80.1_{(-0.3)}$	$73.6_{(-0.8)}$	89.8 _(+0.1)	
BYOL [7]	$46.9_{(+25.0)}$	$8.6_{(-1.4)}$	$53.7_{(+1.0)}$	$52.7_{(-3.7)}$	88.6 _(+0.8)	80.7 (+0.3)	$76.5_{(+2.1)}$	$89.5_{(-0.2)}$	
SimCLR [3]	$48.7_{(+26.8)}$	$15.5_{(+5.5)}$	61.3(+8.6)	58.7(+2.3)	86.9 (0.9)	$79.9_{(-0.5)}$	74.3(0.1)	89.3(0.4)	
w/o Z-Matching	49.1 _(+27.2)	21.1 _(+11.1)	55.8(+3.4)	45.1 _(-11.3)	88.3 _(+0.5)	81.2 _(+0.8)	81.3 _(+6.9)	89.7	
w/o Fundament	$45.3_{(+23.4)}$	$0.0_{(-10.0)}$	$58.8_{(+6.4)}$	$48.5_{(-7.9)}$	$87.0_{(-0.8)}$	$79.5_{(-0.9)}$	$76.6_{(+2.2)}$	$89.0_{(-0.7)}$	
w/o Affine head	57.7 _(+35.8)	$17.9_{(+7.9)}$	$57.6_{(+4.9)}$	53.4 _(-3.0)	89.4 _(+1.6)	82.3 _(+1.9)	$79.8_{(+5.4)}$	89.8 _(+0.1)	
Our GVSL (Whole)	68.4 _(+46.5)	28.7 _(+18.7)	$60.8_{(+8.1)}$	79.9 _(+23.5)	91.2(+3.4)	81.3 _(+0.9)	82.2 _(+7.8)	90.0(+0.3)	

- When **only learning the GM** (Z-Matching), its initial weak representability makes the pre-trained model have inefficient optimization and brings poor representation
- When **adding the fundamental task**, our GVSL has better performance than the single two sub-pretext tasks on all four downstream tasks.
- When **removing the Affine head** in the Z-Matching head, it reduces 3.2% and 2.4% AUC in the linear and fine-tuning evaluations of CCC task due to the lack of global representation learning.



➤ Pre-trained models in the SHC task demonstrate our GVSL's promotion for the clustering effect.

ABLATION STUDY

➤ The self-restoration learns a basic representation for visual semantic regions, thus driving the learning of inter-image similarity in our GM.

DISCUSSION AND CONCLUSION

- ➤ Conclusion of method: Geometric Visual Similarity Learning based on the topological invariance of 3D medical images is a powerful prior for the representation pre-training of inter-image similarity;
- Future work: Expand the learning of inter-image similarity to some images without topological invariance, i.e., whole slide imaging.

THANKS, Q&A

He Yuting (何字霆) Southeast University