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Scientific question: How to discover the inter-image correspon-
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Intuition: Implicitly embed topology
similarity | manifold inner the images into the
measurement process, and measure the similarity on this topology manifold.
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Consistent topology of
visual semantics

11. Deformable head ¢ for local visual
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c) Fundament:

Self-Restoratior! for a basic representation of visual semantics Restored image x'a

o Better clustering effect
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- - - S Pretrain a) Linear: powerful representation b) Fine-tuning: great transferring
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Network

Clustering effect for same
semantic features

Target: Constrain pre-training network for cCONsistent representation of these same semantic regions between

Images without annotations. Once successful, 1t will bring great clustering effect for same semantic features, powerful
representability of pre-trained network, and effective transferring for potential downstream tasks.
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Contribution: In this paper, we propose a novel SSP paradigm, Geometric Visual Similarity Learning (GVSL), to

learn the inter-image similarity in 3D medical images. It embeds the prior of topological invariance into the measurement of the
similarities, and train network to estimate semantics’ correspondence from the represented features in geometric matching (GM).

v' GVSL learns the geometric matching for the learning of inter-image similarity via the gradient;
v' Z-Matching head learns affine and deformable matchings for global and local representations;

v Fundamental task, self-restoration, for a basic representation gives a warm-up for GM learning.
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Efficient GM learning with self-restoration
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— Our GVSL (Z-Matching+ Self-Restoration) Result 3: The self-restoration learns a basic

0 — .. representation for visual semantic regions, driving the
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x10° Iterations learning of inter-image similarity in our GM.
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